Los filtros convencionales, de los que derivan el Generalized DEMA o la media T3 de Tillson, emplean transformaciones aritméticas que requieren al menos dos parámetros: Número de barras de la serie y coeficiente de filtrado (vfactor). A cambio, se consigue una relación aceptable entre nivel de filtrado (smoth) y retardo (lag).
En mi opinión, una de las principales ventajas de la metodología propuesta por Ehlers, es que consigue crear –como seguidamente veremos– curvas prácticamente equivalentes empleando muy pocos datos y con un sólo parámetro optimizable: El factor gamma. En la práctica, esto se traduce en indicadores con un mayor nivel de sensibilidad y con la misma o superior capacidad de filtrado.
Por otra parte, esta técnica puede aplicarse en la construcción de versiones mejoradas de otros indicadores como el RSI, el MACD o el Estocástico que se adaptan con mayor rapidez a la evolución de los precios.
Omitiremos los detalles matemáticos sobre las transformaciones de Laguerre para centrarnos en la estructura del LMA. La media consta de tres partes:
(A) Un descriptor de la estructura consensual del mercado en cada barra. Por lo general: Price= (H+L+C)/3, Price =(H+L)/2 o Price=Close.
(B) La transformación de Laguerre para un número limitado de elementos (entre tres y cinco):
L0 = (1-gamma)*Price+gamma*L0[1]
L1= -gamma*L0+L0[1]+gamma*L1[1]
L2= -gamma*L1+L1[1]+gamma*L2[1]
L3= -gamma*L2+L2[1]+gamma*L3[1]
(C) Un filtro de salida tipo FIR:
LMA=(L0+2*L1+2*L2+L3)/6
En la imagen inferior podemos ver como se modifica la relación entre filtrado y retardo en la LMA para diferentes valores del parámetro gamma:
Un vistazo a las medias de Tillson (T3) y Ehlers (LMA) ilustra de manera elocuente la superioridad de este proceso de filtrado. Para conseguir una LMA equivalente al T3 (barras= 30, vfactor=0,65) sólo ha sido necesario “jugar durante unos segundos con el parámetro gamma.
El gráfico anterior muestra como la LMA equivalente consigue un retardo (lag) inferior en la mayor parte de los movimientos del mercado.
En definitiva, considero que estamos ante una media más robusta por los tres siguientes motivos:
Emplea menos datos y parámetros.
Consigue una mejor relación promedio filtrado / retardo.
Puede controlarse de manera más precisa. Lo que resulta de gran importancia en su aplicación a sistemas.
Como siempre, los usuarios registrados encontrarán el código para Visual Chart en nuestra sección de
descargas.
© Tradingsys.org, 2006.